

Your complete power solutions.

User Manual

BMS123 Smart Extended Module

Your complete power solutions.

Introduction

BMS123 Smart is a battery management system for lithium cells. The last cell – called Out board – has two relays to signal some conditions. To add extra functionality, the BMS123 Smart Extended Module has been developed. This module was designed for many more advanced applications like automotive, boat and other applications.

Functionality

The module adds the following functionality to the BMS123 Smart system:

- 4 configurable relays switch relay on at time or conditions
- 2 individual CAN bus connections
- Control Elcon/TC Charger via CAN bus interface
- · Broadcast BMS settings on CAN bus
- Compatible with EV charging stations using the J1772/IEC 62196 protocol adaptive charging current limits the charger current to the maximum current of the charging station
- Control two analog gauges to indicate fuel level (state of charge) and current consumption
- Isolation detection measure the isolation resistance between the power supply and an isolated battery pack

Connecting the module

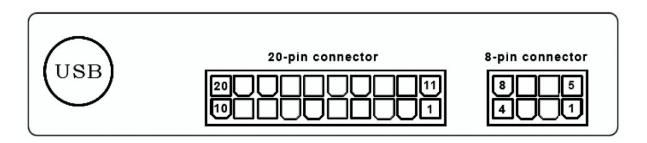


Figure 1 - Front view of the module panel

The 20-pin and 8-pin connector are Minifit Junior connectors. The USB connector is of the mini-USB type.

20-pin connector Pin number Name

Pin number	Name	Description
1	Supply ground	Ground supply for module
11	Supply voltage	Power supply for module. Range 8-80V
2	J1772 charging proximity (PP)	Charging station proximity pin from charging connector
12	J1772 charging pilot (CP)	Charging station pilot pin from charging connector
3	-	-
13	Input signal	External digital input signal for relay condition
4	Fuel meter	Analog fuel meter signal wire
14	Current meter	Analog current meter signal wire
5	-	-
15	-	-
6	BMS data in	One of two wires from BMS for BMS data
16	BMS data in	One of two wires from BMS for BMS data
7	CAN1 Low	CAN bus 1: CAN low
17	CAN1 High	CAN bus 1: CAN high
8	CAN2 Low	CAN bus 2: CAN low
18	CAN2 High	CAN bus 2: CAN high
9	Elcon enable	Elcon/TC Charger enable pin
19	Isolation ground	Ground from isolated supply to measure isolation fault detection
10	Elcon ground	Elcon/TC Charger ground pin
20	Elcon +12V	Elcon/TC Charger +12V pin

8-pin connector

Pin number	Name	Description
1	Relay 1 pin A	One of two pins from relay 1. When relay closes, pin A connects to pin B.
2	Relay 2 pin A	One of two pins from relay 2. When relay closes, pin A connects to pin B.
3	Relay 3 pin A	One of two pins from relay 3. When relay closes, pin A connects to pin B.
4	Relay 4 pin A	One of two pins from relay 4. When relay closes, pin A connects to pin B.
5	Relay 1 pin B	One of two pins from relay 1. When relay closes, pin A connects to pin B.
6	Relay 2 pin B	One of two pins from relay 2. When relay closes, pin A connects to pin B.
7	Relay 3 pin B	One of two pins from relay 3. When relay closes, pin A connects to pin B.
8	Relay 4 pin B	One of two pins from relay 1. When relay closes, pin A connects to pin B.

Your complete power solutions.

Connecting with BMS123 Smart

To connect the module with the BMS123 Smart, use a twisted wire from the OUT board to the module. There is no polarity.

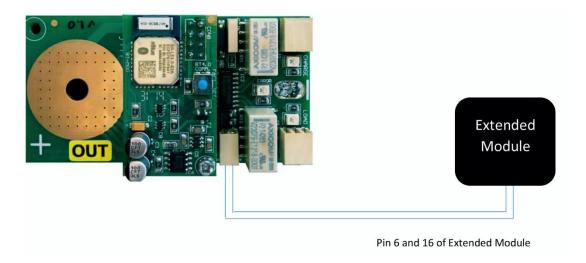


Figure 3 – Connecting the OUT module with the Extended Module

Charging station (J1772) for vehicles

Electric vehicles can be charged at charging stations using the J1772 protocol. The Extended Module communicates with the charging station and gets the maximum allowed current. This advertised current will be used when controlling a charger via the module.

The PE - earth of the inlet connector in the vehicle - has to be connected to the GND of the module (normally negative pole of 12V supply).

The PP – proximity – has to be connected to pin 2 of the Extended Module.

The CP – charging pilot – has to be connected to pin 12.

Note: only use official charging cables as they contain a resistor on each side of the connector. The system will not work otherwise.

Your complete power solutions.

Isolation detection

Some battery packs, especially when high voltage, need to be isolated from the electronic power supply like a 12V battery. It is important to continuously measure this isolation resistance between the high voltage pack which the BMS manages and the power supply of this Extended Module. This can be done with the isolation detection.

To make use of this functionality, the Extended Module needs to be powered from the low voltage supply (like 12V). Connect the negative pole of the high voltage battery pack to pin 19 of the Extended Module connector. You should see a very high resistance (i.e. 999kOhm) in the "monitor" tab in the Extended Module software. If the value is low, it seems like the pack is not galvanic isolated from the low voltage power supply.

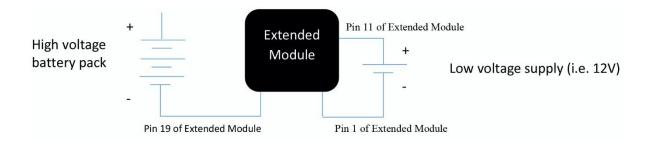


Figure 4 – Isolation resistance connection circuit

Your complete power solutions.

Software

The software for the Extended Module consists of different sections, divided by tabs.

GENERAL

This contains the module firmware version, connection status and current date/time running on the module. This date will be used by the configurable relays in time mode.

MONITOR

The most important data like total pack voltage, state of charge and individual cell voltages will be shown here.

BMS DATA

Global BMS settings like minimum cell voltage, maximum cell voltage and temperatures have to be configured here. Also all BMS data can be send on the CAN bus.

NOTE: the BMS does NOT use the minimum voltage, maximum voltage, minimum temperature and maximum temperature configured by the Bluetooth module.

CAN BUS MESSAGES

It is possible to send the most important BMS data like voltages, temperatures, settings and status on a CAN bus. Choose the the desired CAN bus network (1 or 2) and fill in the start message ID. The BMS will send a 8 different CAN bus messages. The first one on the start address (N), second one N+1 etc. See Appendix A for more information about each specific message and its data bytes.

CONFIGURABLE RELAYS

Four relays can be independently configured on day of week, hysteresis or boolean logic. There is also an "invert output" option. In this case, the relay

Day of week - relay is active on selected days

Hysteresis – select a variable and choose above which value the relay turns on. Also choose a value when the relay turns back to the off state. This second value always has to be smaller than the first value.

Your complete power solutions.

Example: you want to turn on a charger when the state of charge is below 50% and off at 80%. You fill 80% in as the first value and 50% as the second. The relay turns on when above 80% and off again when under 50%. However, when we check the "invert output" box, the relay now turns off above 80% and on below 50%.

Boolean logic

Simple logic variables called booleans can also be used to set the relay active. The relay will be on when one of the logic values is true.

ANALOG GAUGES

Two analog gauges can be controlled to indicate fuel (state of charge) and current consumption.

Indicator style

There are three indicator styles:

- No regen display only the outgoing current. The indicator will stay at 0A when the total current is regenerative.
- Centered indicator The indicator will turn counter clockwise when the total current is regenerative. When the total current is outgoing (from the pack), the indicator will turn clockwise from the center.
- Absolute value show both incoming and outgoing currents.

Current range

This is the maximum current value which will be displayed. The maximum value correspondents to 100% on the meter.

Gauge calibration

To calibrate a gauge, click on the percentage you want to calibrate. When the value has focus, the gauge should go to that value. Minimum value is 0, maximum is 255. The module will interpolate the current value with these calibration values.

Example: you are calibrating the 25%. Click on the box next to 25%. If the gauge indicator stays below 25%, you have to increase the value until the indicator reaches 25%. Do this for 0%, 25%, 50%, 75% and 100%.

Your complete power solutions.

Appendix A – BMS data CAN bus messages

All data will be send in "Big Endian" format.

Signed data is formatted as two's complement.

CAN bus start address (N) and bitrate can be programmed by the BMS123 Smart Extended Module PC Software

Address:	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
N+0	Total voltage Current IN			Current OUT		Current Battery		
N+1	Energy stored			Battery capacity		SOC	-	
N+2	Energy today collected			Energy today consumed				
N+3	Total energy collected			Total energy consumed				
N+4	Cell voltage MIN		Cell voltage MAX		Cell voltage Bypass	-	-	-
N+5	Cell voltage Lowest Low Nr Cell voltage		ge Highest	High Nr	Sbyte 1	Sbyte 2		
N+6	Tmp, Lowest	Low Nr	Tmp, Highest	High Nr	Min charg temp	Min dis temp	Max temp	-
N+7	Current cell voltage		Cur. Temp	Cur. Nr	Cell cnt	-	Isolation resistance	-

Your complete power solutions.

Message	Step	Size	Signed	Example 1	Example 2
Total Voltage	0,1 Volt/bit	16 bit	-	0x15FF = 563,1V	
Current IN Current OUT Current Battery	0,1 Amp/bit 0,1 Amp/bit 0,1 Amp/bit	16 bit 16 bit 16 bit	Signed Signed Signed	0x0230 = 56,0 Amp 0x0230 = 56,0 Amp 0x0230 = 56,0 Amp	0xFF6E = -14,6 Amp 0xFF6E = -14,6 Amp 0xFF6E = -14,6 Amp
Energy stored Batery capacity SOC (state of charge)	Wh/bit 0,1 kWh/bit 1%/bit	32 bit 16 bit 8 bit	- - -	0x00A3 = 163 kWh 0x00A0 = 16,0 kWh 0x32 = 50%	
Energy today collected Energy today consumed	Wh/bit Wh/bit	32 bit 32 bit	-	0x64 = 100 Wh 0x64 = 100 Wh	
Total energy collected Total energy consumed	kWh/bit kWh/bit	32 bit 32 bit	-	0x00A3 = 163 kWh 0x00A3 = 163 kWh	
Cell voltage MIN Cell voltage MAX Cell voltage Bypass	1mV/bit 1mV/bit 1mV/bit	16 bit 16 bit 16 bit	- - -	0x09C4 = 2,500V 0x0E74 = 3,700V 0x0DAC = 3,500V	OUT Board settings OUT Board settings OUT Board settings
Cell Voltage lowest Low nr.	1mV/bit Nr/bit	16 bit 8 bit	-	0x0B86 = 2,950V 0x64 = cell nr 100	
Cell Voltage highest High nr.	1mV/bit Nr/bit	16 bit 8 bit	-	0x0E10 = 3,600V 0x32 = cell nr 50	
Minimum charging temperature Minimum discharge temp Maximum temperature	1°C/bit 1°C/bit 1°C/bit	8 bit 8 bit 8 bit	Signed Signed Signed	0x14 = 20 °C 0x15 = 21 °C 0x16 = 20 °C	
Current cell voltage Current cell temperature Current nr. Cell count	1mV/bit 1°C/bit Nr/bit Nr/bit	16 bit 8 bit 8 bit 8 bit	- Signed - -	0x0B86 = 2,950V 0x14 = 20 °C 0x18 = cell nr 24 0xFF = 255 cells	0xFA = -6 °C
Isolation resistance	kΩ/bit	16 bit	-	0x258 = 600kΩ	

Your complete power solutions.

Status byte 1, 8 bit				
MSB	Allow to charge			
6	Allow to discharge			
5	Cell communciation error			
4	BMS communication error			
3	Exceed minimum voltage			
2	Exceed maximum voltgae			
1	Exceed minimum temperature			
LSB	Exceed maximum temperature			

Status byte 2, 8 bit			
MSB	-		
6	J1772 = connected		
5	J1772/Elcon/TC = charging		
4	-		
3	-		
2	-		
1	-		
LSB	-		

GWL Power Ltd. Průmyslová 11, 102 19 Prague 10 Czech Republic, European Union